Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Environ Sci Technol ; 2023 May 15.
Article in English | MEDLINE | ID: covidwho-20238816

ABSTRACT

Despite the fact that coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been disrupting human life and health worldwide since the outbreak in late 2019, the impact of exogenous substance exposure on the viral infection remains unclear. It is well-known that, during viral infection, organism receptors play a significant role in mediating the entry of viruses to enter host cells. A major receptor of SARS-CoV-2 is the angiotensin-converting enzyme 2 (ACE2). This study proposes a deep learning model based on the graph convolutional network (GCN) that enables, for the first time, the prediction of exogenous substances that affect the transcriptional expression of the ACE2 gene. It outperforms other machine learning models, achieving an area under receiver operating characteristic curve (AUROC) of 0.712 and 0.703 on the validation and internal test set, respectively. In addition, quantitative polymerase chain reaction (qPCR) experiments provided additional supporting evidence for indoor air pollutants identified by the GCN model. More broadly, the proposed methodology can be applied to predict the effect of environmental chemicals on the gene transcription of other virus receptors as well. In contrast to typical deep learning models that are of black box nature, we further highlight the interpretability of the proposed GCN model and how it facilitates deeper understanding of gene change at the structural level.

2.
Journal of hazardous materials ; 2023.
Article in English | EuropePMC | ID: covidwho-2297481

ABSTRACT

On-site environmental surveillance of viruses is increasingly important for infection prevention and pandemic control. Herein, we report a facile single-tube colorimetric assay for detecting severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) from environmental compartments. Using glycerol as the phase separation additive, reverse transcription recombinase polymerase amplification (RT-RPA), CRISPR-Cas system activation, G-quadruplex (G4) cleavage, and G4-based colorimetric reaction were performed in a single tube. To further simplify the test, viral RNA genomes used for the one-tube assay were obtained via acid/base treatment without further purification. The whole assay from sampling to visual readout was completed within 30 min at a constant temperature without the need for sophisticated instruments. Coupling the RT-RPA to CRISPR-Cas improved the reliability by avoiding false positive results. Non-labeled cost-effective G4-based colorimetric systems are highly sensitive to CRISPR-Cas cleavage events, and the proposed assay reached the limit of detection of 0.84 copies/μL. Moreover, environmental samples from contaminated surfaces and wastewater were analyzed using this facile colorimetric assay. Given its simplicity, sensitivity, specificity, and cost-effectiveness, our proposed colorimetric assay is highly promising for applications in on-site environmental surveillance of viruses. Graphical

3.
Environ Sci Technol ; 57(14): 5739-5750, 2023 04 11.
Article in English | MEDLINE | ID: covidwho-2295941

ABSTRACT

We have been effectively protected by disposable propylene face masks during the COVID-19 pandemic; however, they may pose health risks due to the release of fine particles and chemicals. We measured micro/nanoparticles and organic chemicals in disposable medical masks, surgical masks, and (K)N95 respirators. In the breathing-simulation experiment, no notable differences were found in the total number of particles among mask types or between breathing intensities. However, when considering subranges, <2.5 µm particles accounted for ∼90% of the total number of micro/nanoparticles. GC-HRMS-based suspect screening tentatively revealed 79 (semi)volatile organic compounds in masks, with 18 being detected in ≥80% of samples and 44 in ≤20% of samples. Three synthetic phenolic antioxidants were quantified, and AO168 reached a median concentration of 2968 ng/g. By screening particles collected from bulk mask fabrics, we detected 18 chemicals, including four commonly detected in masks, suggesting chemical partition between the particles and the fabric fibers and chemical exposure via particle inhalation. These particles and chemicals are believed to originate from raw materials, intentionally and nonintentionally added substances in mask production, and their transformation products. This study highlights the need to study the long-term health risks associated with mask wearing and raises concerns over mask quality control.


Subject(s)
COVID-19 , Nanoparticles , Humans , COVID-19/prevention & control , Masks , Polypropylenes , Pandemics/prevention & control
4.
Talanta ; 258: 124479, 2023 Jun 01.
Article in English | MEDLINE | ID: covidwho-2255880

ABSTRACT

The ongoing outbreak of the novel coronavirus disease 2019 (COVID-19) draws worldwide concerns due to its long incubation period and strong infectivity. Although RT-PCR-based methods are being widely applied for clinical diagnosis, timely and accurate diagnosis towards COVID-19 causing virus, the SARS-CoV-2, is still limited due to labor-intensive and time-consuming operations. Herein, we report a new viral RNA extraction method based on poly-(amino ester) with carboxyl group (PC)-coated magnetic nanoparticles (pcMNPs) for the sensitive detection of SARS-CoV-2. This method combines the lysis and binding steps into one step, and refines multiple washing steps into one step, giving a turnaround time of less than 9 min. Furthermore, the extracted pcMNP-RNA complexes can be directly introduced into subsequent RT-PCR reactions without elution. This simplified viral RNA method could be well adapted in fast manual and automated high-throughput nucleic acids extraction protocols suitable for different scenarios. A high sensitivity down to 100 copies/mL and a linear correlation between 100 and 106 copies/mL of SARS-CoV-2 pseudovirus particles are achieved in both protocols. Benefitting from the simplicity and excellent performances, this new method can dramatically improve the efficiency and reduce operational requirements for the early clinical diagnosis and large-scale SARS-CoV-2 nucleic acid screening.


Subject(s)
Magnetite Nanoparticles , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , RNA, Viral/analysis , RNA, Viral/genetics , Sensitivity and Specificity
5.
Int J Clin Health Psychol ; 22(3): 100327, 2022.
Article in English | MEDLINE | ID: covidwho-1956164

ABSTRACT

Background/Objective: This study aimed to examine associations of the impact of COVID-19 pandemic on family life with emotional and behavioral health among preschool children. Methods: A longitudinal study including 1595 preschool children aged 3-6 years and their families was conducted in Anhui Province. The linear regression was applied to examine associations between the impact of COVID-19 pandemic on family life and emotional and behavioral health. Results: Results of the multivariable linear regression indicated that the severe impact of COVID-19 pandemic on family life was significantly associated with more sleep problems, poor dietary behavior habits, more anxiety symptoms, and more problematic behaviors; and these effects exhibited gender and age differences. Conclusions: The severe impact of COVID-19 pandemic on family life significantly increased the risk for exacerbated emotional and behavioral health among preschool children. It is considered vital to identify risk factors for vulnerable families and then to implement precise interventions when necessary for emotional and behavioral health of children in these families.

6.
J Breath Res ; 16(4)2022 07 11.
Article in English | MEDLINE | ID: covidwho-1908700

ABSTRACT

Whether tobacco smoking affects the occurrence and development of coronavirus disease 2019 (COVID-19) is still a controversial issue, and potential biomarkers to predict the adverse outcomes of smoking in the progression of COVID-19 patients have not yet been elucidated. To further uncover their linkage and explore the effective biomarkers, three proteomics and metabolomics databases (i.e. smoking status, COVID-19 status, and basic information of population) from human serum proteomic and metabolomic levels were established by literature search. Bioinformatics analysis was then performed to analyze the interactions of proteins or metabolites among the above three databases and their biological effects. Potential confounding factors (age, body mass index (BMI), and gender) were controlled to improve the reliability. The obtained data indicated that smoking may increase the relative risk of conversion from non-severe to severe COVID-19 patients by inducing the dysfunctional immune response. Seven interacting proteins (C8A, LBP, FCN2, CRP, SAA1, SAA2, and VTN) were found to promote the deterioration of COVID-19 by stimulating the complement pathway and macrophage phagocytosis as well as inhibiting the associated negative regulatory pathways, which can be biomarkers to reflect and predict adverse outcomes in smoking COVID-19 patients. Three crucial pathways related to immunity and inflammation, including tryptophan, arginine, and glycerophospholipid metabolism, were considered to affect the effect of smoking on the adverse outcomes of COVID-19 patients. Our study provides novel evidence and corresponding biomarkers as potential predictors of severe disease progression in smoking COVID-19 patients, which is of great significance for preventing further deterioration in these patients.


Subject(s)
COVID-19 , Proteomics , Biomarkers/metabolism , Breath Tests , Humans , Metabolomics , Reproducibility of Results , Smoking/adverse effects , Tobacco Smoking
7.
Eur J Clin Pharmacol ; 78(9): 1403-1420, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1899135

ABSTRACT

PURPOSE: The coronavirus disease 2019 (COVID-19) pandemic has shown unprecedented impact world-wide since the eruption in late 2019. Importantly, emerging reports suggest an increased risk of thromboembolism development in patients with COVID-19. Meanwhile, it is found that aspirin reduced mortality in critically ill patients with non-COVID-19 acute respiratory distress syndrome. Therefore, a meta-analysis was performed to investigate the effects of aspirin on COVID-19 mortality. METHODS: A systematic literature search was conducted in 10 electronic databases and 4 registries. Random effects models were used to calculate pooled relative risks (RRs) with 95% confidence intervals (Cis) to estimate the effect of aspirin on COVID-19 mortality. Relevant subgroup analyses and sensitivity analyses were also performed. RESULTS: The results showed that aspirin use was associated with a reduction in COVID-19 mortality (adjusted RR 0.69; 95% CI 0.50-0.95; P < 0.001). Subgroup analysis found that the low-dose group was associated with a reduced COVID-19 mortality (adjusted RR 0.64; 95% CI 0.48-0.85; P < 0.01). Aspirin use was associated with reduced COVID-19 mortality in Europe and America (crude RR 0.71; 95% CI 0.52-0.98; P = 0.04), and results from cohort studies suggested that aspirin use was a protective factor for COVID-19 mortality (adjusted RR 0.73; 95% CI 0.52-0.99; P = 0.04). Meanwhile, aspirin use was not associated with bleeding risk (crude RR 1.22; 95% CI 0.80-1.87; P = 0.96). CONCLUSIONS: This meta-analysis found that aspirin use was associated with a reduction in mortality in patients with COVID-19 and not with an increased risk of bleeding.


Subject(s)
Aspirin , COVID-19 Drug Treatment , Aspirin/therapeutic use , Critical Illness , Hemorrhage/chemically induced , Humans , Pandemics
8.
Environ Sci Process Impacts ; 24(5): 649-674, 2022 May 25.
Article in English | MEDLINE | ID: covidwho-1778646

ABSTRACT

The coronavirus disease 2019 (COVID-19) has swept the world and still afflicts humans. As an effective means of protection, wearing masks has been widely adopted by the general public. The massive use of disposable masks has raised some emerging environmental and bio-safety concerns: improper handling of used masks may transfer the attached pathogens to environmental media; disposable masks mainly consist of polypropylene (PP) fibers which may aggravate the global plastic pollution; and the risks of long-term wearing of masks are elusive. To maximize the utilization and minimize the risks, efforts have been made to improve the performance of masks (e.g., antivirus properties and filtration efficiency), extend their functions (e.g., respiration monitoring and acting as a sampling device), develop new disinfection methods, and recycle masks. Despite that, from the perspective of the life cycle (from production, usage, and discard to disposal), comprehensive solutions are urgently needed to solve the environmental dilemma of disposable masks in both technologies (e.g., efficient use of raw materials, prolonging the service life, and enabling biodegradation) and policies (e.g., stricter industry criteria and garbage sorting).


Subject(s)
COVID-19 , Pandemics , Animals , COVID-19/prevention & control , Humans , Life Cycle Stages , Pandemics/prevention & control , Plastics , SARS-CoV-2
9.
Environ Sci Technol ; 56(3): 1854-1863, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1633676

ABSTRACT

Virus receptors are highly involved in mediating the entrance of infectious viruses into host cells. Here, we found that typical chemical exposure caused the upregulation of virus receptor mRNA levels. Chemicals with the same structural characteristics can affect the transcription of angiotensin-converting enzyme 2 (ACE2), a dominant receptor of SARS-CoV-2. Some chemicals can also regulate the transcription of ACE2 by similar regulatory mechanisms, such as multilayer biological responses and the crucial role of TATA-box binding protein associated factor 6. The abovementioned finding suggested that chemical mixtures may have a joint effect on the ACE2 mRNA level in the real scenario, where humans are exposed to numerous chemicals simultaneously in daily life. Chemically regulated virus receptor transcription was in a tissue-dependent manner, with the highest sensitivity in pulmonary epithelial cells. Therefore, in addition to genetic factors, exogenous chemical exposure can be an emerging nongenetic factor that stimulates the transcription of virus receptor abundance and may elevate the protein expression. These alterations could ultimately give rise to the susceptibility to virus infection and disease severity. This finding highlights new requirements for sufficient epidemiological data about exposomes on pathogen receptors in the host.


Subject(s)
COVID-19 , Receptors, Virus , Angiotensin-Converting Enzyme 2 , Environmental Pollutants , Humans , RNA, Messenger , SARS-CoV-2
10.
Front Pharmacol ; 12: 721769, 2021.
Article in English | MEDLINE | ID: covidwho-1512050

ABSTRACT

Coronavirus disease (COVID-19) patients with cardiovascular and metabolic disorders have been found to have a high risk of developing severe conditions with high mortality, further affecting the prognosis of COVID-19. However, the effect of hypertension and angiotensin-converting enzyme inhibitors (ACEI) and angiotensin receptor blocker (ARB) agents on the clinical characteristics and inflammatory immune responses in COVID-19 patients is still undefined. In this study, 90 COVID-19 patients were divided into hypertension and nonhypertension groups. The hypertension group was divided into well-controlled and poorly controlled subgroups based on blood pressure levels; moreover, hypertensive patients were also divided into ACEI/ARB and non-ACEI/ARB subgroups according to the administration of ACEI/ARB antihypertensive agents. The clinical characteristics of and inflammatory immune biomarker levels in the different groups of COVID-19 patients were compared, and the association between the combined effect of hypertension with ACEI/ARB antihypertensive agents and the severity of COVID-19 was examined. The results showed that the levels of aminotransferase (AST) and hs-cTnI were higher in the hypertension group compared with the nonhypertension group. The long-term use of ACEI/ARB agents in patients had statistically significantly lower AST, low-density lipoprotein cholesterol (LDL-C), and oxygen uptake and lower white cell count, neutrophil count, and levels of CD4, CD8, CRP, and PCT but without statistical significance. In addition, compared with COVID-19 patients without hypertension, hypertensive patients without the use of ACEI/ARB had a higher risk of developing severity of COVID-19 (for poorly controlled patients: OR = 3.97, 95% CI = 1.03-15.30; for well-controlled patients: OR = 6.48, 95% CI = 1.77-23.81). Hypertension could cause organ damage in COVID-19 patients, but the long-term use of ACEI/ARB agents may be beneficial to alleviate this injury.

11.
Arch Med Res ; 53(2): 186-195, 2022 02.
Article in English | MEDLINE | ID: covidwho-1347493

ABSTRACT

BACKGROUND AND AIMS: During the current Coronavirus Disease 2019 (COVID-19) pandemic, patients with diabetes face disproportionately more. This study was performed to clarify anti-inflammatory effects of anti-diabetic agents on COVID-19 in patients with diabetes. METHODS AND RESULTS: Relevant literature was searched on 15 databases up to November 14, 2020 and was updated on April 13, 2021. The pooled ORs along with 95% CIs were calculated to evaluate combined effects. 31 studies with 66,914 patients were included in qualitative and quantitative synthesis. Meta-analysis showed that metformin was associated with a statistically significant lower mortality (pooled OR = 0.62, 95% CI, 0.50-0.76, p = 0.000) and poor composite outcomes (pooled OR = 0.83, 95% CI, 0.71-0.97, p = 0.022) in diabetic patients with COVID-19. Significance of slight lower mortality remained in sulfonylurea/glinides (pooled OR = 0.93, 95% CI, 0.89-0.98, p = 0.004), but of poor composite outcomes was not (pooled OR = 1.48, 95% CI, 0.61-3.60, p = 0.384). Dipeptidyl peptidase-4 inhibitors (DPP-4 inhibitors) were associated with statistically non-significant lower mortality (pooled OR = 0.95, 95% CI, 0.72-1.26, p = 0.739) or poor composite outcomes (pooled OR = 1.27, 95% CI, 0.91-1.77, p = 0.162) of COVID-19 in diabetic patients. CONCLUSION: Metformin might be beneficial in decreasing mortality and poor composite outcomes in diabetic patients infected with SARS-CoV-2. DPP-4 inhibitors, sulfonylurea/glinides, SGLT-2 inhibitors, and GLP-1RA would not seem to be adverse. There was insufficient evidence to conclude effects of other anti-diabetic agents. Limited by retrospective characteristics, with relative weak capability to verify causality, more prospective studies, especially RCTs are needed. REGISTRATION NUMBER: PROSPERO-CRD42020221951.


Subject(s)
COVID-19 Drug Treatment , Diabetes Mellitus, Type 2 , Dipeptidyl-Peptidase IV Inhibitors , Diabetes Mellitus, Type 2/complications , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Humans , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Prospective Studies , Retrospective Studies , SARS-CoV-2
12.
J BioX Res ; 4(2): 53-59, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1307580

ABSTRACT

OBJECTIVE: Emetine, an isoquinoline alkaloid that is enriched at high concentrations in the lung, has shown potent in vitro activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The aim of this study was to better understand the effectiveness of low-dose emetine for patients with coronavirus disease 2019 (COVID-19). METHODS: In this real-world study, 63 patients with mild or common COVID-19 were recruited from Wuhan Fangcang Shelter Hospital and five COVID-19-designated hospitals in Anhui Province, China from February to March 2020. Thirty-nine patients from Wuhan Fangcang Shelter Hospital were assigned to a pragmatic randomized controlled clinical trial, and 24 patients from the 5 COVID-19-designated hospitals in Anhui Province underwent a real-world study. The medication course of emetine was less than 10 days. The main symptoms and adverse reactions of all patients were observed and recorded. The primary outcome measure was the time required for a negative SARS-CoV-2 RNA result or the negative result rate on day 10. Secondary outcomes included axillary temperature, transcutaneous oxygen saturation, and respiratory frequency recovery. The study was approved by the Ethics Committee of The First Affiliated Hospital of Anhui Medical University on February 20, 2019 (approval No. PJ2020-03-19) and was registered with the Chinese Clinical Trial Registry on February 20, 2019 (registration number: ChiCTR2000030022). RESULTS: The oxygen saturation values were higher in the treatment group than in the control group on the first day after enrollment for patients treated at Fangcang Shelter Hospital. The axillary body temperature, respiratory rate, and oxygen saturation among patients in Fangcang Shelter Hospital were related to the time effect but not to the intervention measures. The respiratory rate and oxygen saturation of patients in the Anhui designated hospitals were related to the intervention measures but not to the time effect. The axillary body temperature of patients in Anhui designated hospitals was related to the time effect but not to the intervention measures. CONCLUSION: Our preliminary study shows that low-dose emetine combined with basic conventional antiviral drugs improves clinical symptoms in patients with mild and common COVID-19 without apparent adverse effects, suggesting that moderately increased doses of emetine may have good potential for treatment and prevention of COVID-19.

13.
Nutr Clin Pract ; 36(4): 863-871, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1224975

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is spreading globally and has caused many deaths. This study investigated, for the first time, COVID-19 patients' nutrition status and its effects on their inflammatory and immune responses. METHODS: Forty-seven COVID-19 patients were recruited for this prospective study. According to the subjective global assessment at admission, patients were divided into the normal nutrition (NN), risk of malnutrition (RMN), or MN group. Serum cytokines and whole blood T-cell subpopulations were measured to assess the inflammatory and immune responses in COVID-19 patients. Analysis of covariance and χ2 tests were used. RESULTS: On admission, the incidences of MN and the RMN in COVID-19 patients were 17.0% and 38.3%, respectively. The MN group had a higher proportion with severe/critical COVID-19 and a longer hospitalization duration than the NN group. Serum interleukin (IL) 6 concentrations were elevated in 97.9% of the patients and were the highest in malnourished patients. The IL-4 and IL-10 levels were elevated in 46.8% and 48.9% of the patients, respectively. The proportion of CD8+ T cells was significantly lower in the MN group than in the NN group. CONCLUSION: A high proportion of COVID-19 patients are malnourished or at risk of malnuourishment, especially those with severe disease. MN is associated with hyperinflammation and immunosuppression in COVID-19 patients, and it may contribute to disease progression.


Subject(s)
COVID-19 , Malnutrition , Humans , Immunosuppression Therapy , Malnutrition/epidemiology , Malnutrition/etiology , Prospective Studies , SARS-CoV-2
14.
Nano Today ; 39: 101161, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1188914

ABSTRACT

The family of coronavirus are named for their crown shape. Encoded by the genetic material inherited from the coronavirus itself, this intrinsic well-known "viral corona" is considered an "inherited corona". After contact with mucosa or the entrance into the host, bare coronaviruses can become covered by a group of dissolved biomolecules to form one or multiple layers of biomolecules. The layers acquired from the surrounding environment are named the "acquired corona". We highlight here the possible role of the acquired corona in the pathogenesis of coronaviruses, which will generate fresh insight into the nature of various coronavirus-host interactions.

15.
Chem Soc Rev ; 50(6): 3656-3676, 2021 Mar 21.
Article in English | MEDLINE | ID: covidwho-1132110

ABSTRACT

The novel human infectious coronaviruses (CoVs) responsible for severe respiratory syndromes have raised concerns owing to the global public health emergencies they have caused repeatedly over the past two decades. However, the ongoing coronavirus disease 2019 (COVID-19) pandemic induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has received unprecedented attention internationally. Monitoring pathogenic CoVs in environmental compartments has been proposed as a promising strategy in preventing the environmental spread and tracing of infectious diseases, but a lack of reliable and efficient detection techniques is still a significant challenge. Moreover, the lack of information regarding the monitoring methodology may pose a barrier to primary researchers. Here, we provide a systematic introduction focused on the detection of CoVs in various environmental matrices, comprehensively involving methods and techniques of sampling, pretreatment, and analysis. Furthermore, the review addresses the challenges and potential improvements in virus detection techniques for environmental surveillance.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , COVID-19/epidemiology , Environmental Monitoring/methods , Pandemics , SARS-CoV-2/isolation & purification , Aerosols/analysis , COVID-19/transmission , Fomites/virology , High-Throughput Nucleotide Sequencing , Humans , Immunoassay , Quality Control , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Sewage/virology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Wastewater/virology
16.
Eur J Integr Med ; 43: 101313, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1126824

ABSTRACT

INTRODUCTION: The highly infectious coronavirus disease 2019 (COVID-19) has now rapidly spread around the world. This meta-analysis was strictly focused on the influence of smoking history on the severe and critical outcomes on people with COVID-19 pneumonia. METHODS: A systematic literature search was conducted in eight online databases before 1 February 2021. All studies meeting our selection criteria were included and evaluated. Stata 14.0 software was used to analyze the data. RESULTS: A total of 109 articles involving 517,020 patients were included in this meta-analysis. A statistically significant association was discovered between smoking history and COVID-19 severity, the pooled OR was 1.55 (95%CI: 1.41-1.71). Smoking was significantly associated with the risk of admission to intensive care unit (ICU) (OR=1.73, 95%CI: 1.36-2.19), increased mortality (OR=1.58, 95%CI: 1.38-1.81), and critical diseases composite endpoints (OR=1.61, 95%CI: 1.35-1.93), whereas there was no relationship with mechanical ventilation. The pooled prevalence of smoking using the random effects model (REM) was 15% (95%CI: 14%-16%). Meta-regression analysis showed that age (P=0.004), hypertension (P=0.007), diabetes (P=0.029), chronic obstructive pulmonary disease (COPD) (P=0.001) were covariates that affect the association. CONCLUSIONS: Smoking was associated with severe or critical outcomes and increased the risk of admission to ICU and mortality in COVID-19 patients, but not associated with mechanical ventilation. This association was more significant for former smokers than in current smokers. Current smokers also had a higher risk of developing severe COVID-19 compared with non-smokers. More detailed data, which are representative of more countries, are needed to confirm these preliminary findings.

17.
J Clin Nurs ; 30(11-12): 1742-1750, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1115056

ABSTRACT

AIMS AND OBJECTIVES: To determine the health-related quality of life (HRQoL) of COVID-19 patients after discharge and its predicting factors. BACKGROUND: COVID-19 has caused a worldwide pandemic and led a huge impact on the health of human and daily life. It has been demonstrated that physical and psychological conditions of hospitalised COVID-19 patients are impaired, but the studies focus on physical and psychological conditions of COVID-19 patients after discharge from hospital are rare. DESIGN: A multicentre follow-up study. METHODS: This was a multicentre follow-up study of COVID-19 patients who had discharged from six designated hospitals. Physical symptoms and HRQoL were surveyed at first follow-up (the third month after discharge). The latest multiple laboratory findings were collected through medical examination records. This study was performed and reported in accordance with STROBE checklist. RESULTS: Three hundred eleven patients (57.6%) were reported with one or more physical symptoms. The scores of HRQoL of COVID-19 patients at third month after discharge, except for the dimension of general health, were significantly lower than Chinese population norm (p < .001). Results of logistic regression showed that female (odds ratio (OR): 1.79, 95% confidence interval (CI): 1.04-3.06), older age (≥60 years) (OR: 2.44, 95% CI: 1.33-4.47) and the physical symptom after discharge (OR: 40.15, 95% CI: 9.68-166.49) were risk factors for poor physical component summary; the physical symptom after discharge (OR: 6.68, 95% CI: 4.21-10.59) was a risk factor for poor mental component summary. CONCLUSIONS: Health-related quality of life of discharged COVID-19 patients did not come back to normal at third month after discharge and affected by age, sex and the physical symptom after discharge. RELEVANCE TO CLINICAL PRACTICE: Healthcare workers should pay more attention to the physical and psychological rehabilitation of discharged COVID-19 patients. Long-term follow-up on COVID-19 patients after discharge is needed to determine the long-term impact of COVID-19.


Subject(s)
COVID-19 , Quality of Life , Aged , Female , Follow-Up Studies , Humans , Patient Discharge , SARS-CoV-2
19.
Environ Pollut ; 267: 115621, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-753606

ABSTRACT

The emergence of a novel coronavirus named SARS-CoV-2 during December 2019, has caused the global outbreak of coronavirus disease 2019 (COVID-19), which is officially announced to be a pandemic by the World Health Organization (WHO). The increasing burden from this pandemic is seriously affecting everyone's life, and threating the global public health. Understanding the transmission, survival, and evolution of the virus in the environment will assist in the prevention, control, treatment, and eradication of its infection. Herein, we aimed to elucidate the environmental impacts on the transmission and evolution of SARS-CoV-2, based on briefly introducing this respiratory virus. Future research objectives for the prevention and control of these contagious viruses and their related diseases are highlighted from the perspective of environmental science. This review should be of great help to prevent and control the epidemics caused by emerging respiratory coronaviruses (CoVs).


Subject(s)
COVID-19 , Coronavirus , Environment , Humans , Pandemics
20.
Chinese Science Bulletin ; 65(22):2321-2325, 2020.
Article | WHO COVID | ID: covidwho-740401

ABSTRACT

The pandemic of the Coronavirus Disease 2019 (COVID-19) has spread around the world. COVID-19 is one of the most serious infectious disease threats in the past 100 years. Epidemiological and clinical studies have shown that early diagnosis of infectious COVID-19 cases is of great help to slow down the spread of disease and reduce mortality. Therefore, the diagnosis of SARS-CoV-2 infection is of great significance in the control of the pandemic. However, because patients with COVID-19 show partially similar symptoms to diseases such as influenza-like illness, it is impossible to diagnose SARS-CoV-2 infection by relying solely on the patient's clinical features. Meanwhile, there are a number of asymptomatic patients, who are capable of spreading the infection while passing general surveillance. The early diagnosis of such cases is also critical for the prevention of the outbreak and control of the pandemic. Given there is no effective SARS-CoV-2-specific anti-viral agents, chemists are engaging in the development of analytical strategies for the SARS-CoV-2 detection and antiviral drug to combat the spread of the COVID-19. In order to support the innovation in the ongoing research on fighting COVID-19 pandemic, we summarized part of the achievements in SARS-CoV-2 detection and drug development engaged by chemists in China. By summarizing the available products and patents with practical potentials in fast analysis, we discussed the recent advances in the techniques for SARS-CoV-2 detection and their application potentials in diagnosis of COVID-19. For the diagnosis of COVID-19, the most specific analysis method is polymerase chain reaction (PCR) based nucleic acid assay. At the end of March, National Medical Products Administration has approved more than 20 products aiming at SARS-CoV-2 test, most of which are kits based on the principle of real-time quantitative reverse transcription PCR (RT-qPCR). Because PCR-based method needs complex manual operation steps, the technique is limited due to the time-consuming reaction steps. Later on, techniques with multiple procedures including nucleic acid extraction, amplification, and virus detection have been integrated for rapid detection. In order to solve the problems caused by disadvantages of complex thermal cycling process in PCR, isothermal amplification has been applied for nucleic acid detection. Combined with isothermal amplification, rapid point-of-care test is applicable for the detection of collected SARS-CoV-2 viral RNA. Although viral RNA assay is the most specific method for diagnosis of COVID-19, it cannot be used to determine the post-infection or monitor the immunity of general populations. The immunological assays could be applied for the detection of antibodies themselves several days after the infection by SARS-CoV-2. Therefore, lateral flow assay, microfluidics, and other technologies have successfully applied for the immune assay. Some reagents, detection kits, and devices have been certificated and marketed internationally. Specific anti-SARS-CoV-2 agents have been designed and tested. Moreover, several small-molecule drug candidates with high efficacy and low toxicity showed great potential in clinical application. Facing the outbreak of epidemic of COVID-19, Department of Chemical Sciences, Department of Mathematical and Physical Sciences of National Natural Science Foundation of China have jointly funded three innovative projects to support the research on the effective and expedite control of the epidemic. These projects include "Research on rapid detection of new coronavirus in aerosol on site", "A pre-clinical study of using small molecules to treat SARS-CoV-2-induced excessive inflammation and injury", and "Polymer micro-/nano-fibrous non-woven fabrics prepared via flash-pressure-released technology and reusable high-quality medical protective suits produced with these fabrics". The pandemic of COVID-19 is a major public health emergency, which poses a major challenge to health system worldwide and also has a m jor impact on economy and society. In response to sudden large-scale outbreaks, rapid, accurate and high-throughput detection technology is undoubtedly the priority of "anti-epidemic". Focusing on the present and serving the long-term requirement, we still need to innovatively propose new ideas to meet the major needs in the diagnosis and treatment of major diseases based on a global perspective.

SELECTION OF CITATIONS
SEARCH DETAIL